Thursday, 14 November 2019

Potential to use CRISPR to alter the microbiome


Researchers at Western University have developed a new way to deliver the DNA-editing tool CRISPR-Cas9 into microorganisms in the lab, providing a way to efficiently launch a targeted attack on specific bacteria. The study opens up the possibility of using CRISPR to alter the makeup of the human microbiome in a way that could be personalized and specific from person to person. It also presents a potential alternative to traditional antibiotics to kill bacteria like Staphyloccous aureus (Staph A) or Escherichia coli (E. coli).

The technology has the potential for development of next generation antimicrobial agents that would be effective even for bacteria that are resistant to all known antibiotics. This technology could also be used to help 'good' bacteria produce compounds to treat diseases caused by protein deficiencies.

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats and can be programmed to target specific stretches of genetic code and to edit DNA at precise locations. Researchers use CRISPR to permanently modify genes in living cells and organisms.
In this way, CRISPR can be programmed to kill bacteria, but until now there wasn't a way to efficiently and specifically target certain bacterial strains.

The delivery system developed at Western uses bacteria's natural ability to replicate -- called bacterial conjugation -- to deliver CRISPR to specific bacteria, in order to alter its DNA and kill it.


See:

Thomas A. Hamilton, Gregory M. Pellegrino, Jasmine A. Therrien, Dalton T. Ham, Peter C. Bartlett, Bogumil J. Karas, Gregory B. Gloor, David R. Edgell. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-12448-3



Posted by Dr. Tim Sandle, Pharmaceutical Microbiology

No comments:

Post a Comment

Pharmaceutical Microbiology Resources

Special offers