Complex control systems are required for the operation of smart microsystems, and their sizes should be reduced. Cells are expected to be applicable as alternatives to these complex control systems. Because a cell integrates many functions in its body and responds to its surrounding environment, cells are intelligent and can be used in smart micromechanical systems.
The research group has developed a method to construct a biohybrid system that incorporates Vorticella. "Harnessing microorganisms requires that a batch assembly method be applied to the movable components in a microchannel. It is necessary to pattern a water-soluble sacrificial layer and confine the movable components in a microchannel," says Moeto Nagai, a lecturer at Toyohashi University of Technology and the leader of the research team. Vorticella cells were placed around blocks in the channel by applying magnetic force. These processes were applied to demonstrate how Vorticella converts the motion of a movable component.
After permeabilized treatment, Vorticella stalks respond to changes in calcium ion concentration, and they can operate as calcium ion-responsive valves. The research team believes that calcium ion-sensitive motors of Vorticella will facilitate the realization of autonomous fluidic valves, regulators, and mixers, as well as wearable smart microsystems, such as an automated insulin infusion pump for diabetes.
See: Moeto Nagai, Kohei Tanizaki, Takayuki Shibata. Batch Assembly of SU-8 Movable Components in Channel Under Mild Conditions for Dynamic Microsystems: Application to Biohybrid Systems. IEEE/ASME Journal of Microelectromechanical Systems, 2019 DOI: 10.1109/JMEMS.2019.2907285
Posted by Dr. Tim Sandle, Pharmaceutical Microbiology
No comments:
Post a comment
Pharmaceutical Microbiology Resources