Friday, 28 June 2019

How Enterococcus faecalis bacteria causes antibiotic resistant infection


Antibiotic resistant infection is a leading threat to public health worldwide. It has been estimated that by 2050, more people could die from infections that are no longer treatable with antibiotics, than from cancer. Understanding how some bacteria have been able to overcome our natural immune defenses, and new drugs as they are introduced, is the key to preventing a future where up to 10 million people could die each year from antibiotic resistant infection.


A new study led by a research team from Massachusetts Eye and Ear and Harvard Medical School describes how bacteria adapted to the modern hospital environment and repeatedly cause antibiotic-resistant bloodstream infections. Infections acquired by hospitalized patients are more often antibiotic-resistant than those that occur elsewhere, and hospitals invest considerable effort to prevent them. Despite best efforts, some bacteria are able to persist and circulate among patients, causing repeated infections.

This study examined one of the first sustained hospital outbreaks of a multidrug-resistant bacterium, Enterococcus faecalis, which occurred from the early through the mid-1980s, causing over 60 outbreak strains.

See: Daria Van Tyne, Abigail L. Manson, Mark M. Huycke, John Karanicolas, Ashlee M. Earl, Michael S. Gilmore. Impact of antibiotic treatment and host innate immune pressure on enterococcal adaptation in the human bloodstream. Science Translational Medicine, 2019; 11 (487): eaat8418 DOI: 10.1126/scitranslmed.aat8418

Posted by Dr. Tim Sandle, Pharmaceutical Microbiology

1 comment:

Pharmaceutical Microbiology Resources

Special offers