This week, a team led by Ethan Garner of Harvard University describes the opposing and balanced enzymatic actions that keep B. subtilis from bulging wide while it builds up its inner cell wall and elongates. The study, in Nature Microbiology, is a collaboration with microscopy developer Rudolf Oldenbourg of the Marine Biological Laboratory (MBL).
"I had been impressed by Rudolf's work for many years and always hoped that I (or someone) would introduce polarization microscopy to bacterial cell biology," Garner says. This paper was his opportunity.
"As I have been giving talks on this work, the bacterial community has been incredibly impressed by this [polarization microscopy] assay," Garner says. "There are many other bacteria that people want to explore with it."
Oldenbourg, a senior scientist at MBL, is happy to oblige. "We are standing ready to support the bacteria research community through the OpenPolScope Resource at MBL," he says.
See: Michael F. Dion, Mrinal Kapoor, Yingjie Sun, Sean Wilson, Joel Ryan, Antoine Vigouroux, Sven van Teeffelen, Rudolf Oldenbourg, Ethan C. Garner. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nature Microbiology, 2019; DOI: 10.1038/s41564-019-0439-0
No comments:
Post a comment
Pharmaceutical Microbiology Resources