Wednesday 17 June 2020

How bacteria purge toxic metals



In E. coli bacterium, the inner membrane sensor protein CusS mobilizes from a clustered form upon sensing copper ions in the environment. CusS recruits the transcription regulator protein CusR and then breaks down ATP to phosphorylate CusR, which then proceeds to activate gene expression to help the cell defend against the toxic copper ions.

Cornell researchers combined genetic engineering, single-molecule tracking and protein quantitation to get a closer look at this mechanism and understand how it functions. The knowledge could lead to the development of more effective antibacterial treatments.

The bacteria's resistance is actually a tag-team operation, with two proteins working together inside the cell. One protein (CusS), in the inner membrane, senses the presence of the chemical or metal and sends a signal to a regulator protein (CusR) in the cytosol, or intercellular fluid. The regulator protein binds to DNA and activates a gene that generates transport proteins, which purge the toxin from the cell.

Microbiologists analyze these functions by using biochemical assays that remove the protein from the cell. However, that process prevents the scientists from observing the proteins in their native environment, and certain details, such as the spatial arrangement between proteins, have remained murky.


For a deeper analysis, researchers used single-cell imaging, whereby they tagged individual proteins in living E. coli with a fluorescent signal and imaged the proteins one at a time, tracking their motions. The procedure yielded millions of images and, ultimately, a finely detailed, qualitative map of the proteins' movement.

See:

Bing Fu, Kushal Sengupta, Lauren A. Genova, Ace George Santiago, Won Jung, Łukasz Krzemiński, Udit Kumar Chakraborty, Wenyao Zhang, Peng Chen. Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proceedings of the National Academy of Sciences, 2020; 201919816 DOI: 10.1073/pnas.1919816117

Posted by Dr. Tim Sandle, Pharmaceutical Microbiology Resources (http://www.pharmamicroresources.com/)

No comments:

Post a Comment

Pharmaceutical Microbiology Resources

Special offers