Wednesday, 21 February 2018

First stem cells created using CRISPR genome activation

Researchers have turned skin cells from mice into stem cells by activating a specific gene in the cells using CRISPR technology. The innovative approach offers a potentially simpler technique to produce the valuable cell type and provides important insights into the cellular reprogramming process.

Pluripotent stem cells can be turned into virtually any cell type in the body. As a result, they are a key therapeutic resource for currently incurable conditions, such as heart failure, Parkinson's disease, and blindness. They also provide excellent models to study diseases and important tools to test new drugs in human cells.

In 2006, Gladstone Senior Investigator Shinya Yamanaka, MD, PhD, discovered he could make stem cells -- dubbed induced pluripotent stem cells (iPSCs) -- by treating ordinary skin cells with four key proteins. These proteins, called transcription factors, work by changing which genes are expressed in the cell, turning off genes associated with skin cells and turning on genes associated with stem cells.

Building on this work, Dr. Sheng Ding and others previously created iPSCs not with transcription factors, but by adding a cocktail of chemicals to the cells. The latest study, published in Cell Stem Cell, offers a third way to turn skin cells into stem cells by directly manipulating the cells' genome using CRISPR gene regulation techniques.


Peng Liu, Meng Chen, Yanxia Liu, Lei S. Qi, Sheng Ding. CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to PluripotencyCell Stem Cell, 2018; DOI: 10.1016/j.stem.2017.12.001

Posted by Dr. Tim Sandle

Special offers