Diagnosing the presence of Yersinia pestis, the cause of plague has been advanced through a rapid method.
Scientists working with Peter Seeberger, Director at the Max Planck Institute of Colloids and Interfaces (MPIKG) in Potsdam and Professor at the Freie Universität Berlin, have come up with a simple, inexpensive and reliable method of detecting the bacterium. The research team, specialising in glycochemistry and glycobiology, first identified and synthesised an oligosaccharide structure on bacterial surface before combining it with a protein to heighten the immunological effect. The presence of antibodies against this surface glycan in the blood of infected patients can be a biomarker of diagnostic value in Yersinia pestis infections. The Potsdam-based scientists also used the antigen to create antibodies which can directly detect the plague pathogen in infected samples.
In order to specifically detect the plague pathogen, the scientists first had to identify an oligosaccharide in a lipopolysaccharide on the surface of Yersinia pestis. This oligosaccharide would serve as a specific antigen. They then synthesised the complex compound in a multi-step process. Subsequently, the chemists bound the sugar molecule to a protein which is used in many vaccines to heighten the immune reaction. The resulting glycoprotein produced by the sugar-protein compound was used to trigger an immune reaction in mice. The scientists used this circumstance to create antibodies to the plague pathogen using murine immune cells.
For further details, refer to the following paper:
Chakkumkal Anish, Xiaoqiang Guo, Annette Wahlbrink, Peter H. Seeberger. Plague Detection by Anti-carbohydrate Antibodies. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201301633
Posted by Tim Sandle
Scientists working with Peter Seeberger, Director at the Max Planck Institute of Colloids and Interfaces (MPIKG) in Potsdam and Professor at the Freie Universität Berlin, have come up with a simple, inexpensive and reliable method of detecting the bacterium. The research team, specialising in glycochemistry and glycobiology, first identified and synthesised an oligosaccharide structure on bacterial surface before combining it with a protein to heighten the immunological effect. The presence of antibodies against this surface glycan in the blood of infected patients can be a biomarker of diagnostic value in Yersinia pestis infections. The Potsdam-based scientists also used the antigen to create antibodies which can directly detect the plague pathogen in infected samples.
In order to specifically detect the plague pathogen, the scientists first had to identify an oligosaccharide in a lipopolysaccharide on the surface of Yersinia pestis. This oligosaccharide would serve as a specific antigen. They then synthesised the complex compound in a multi-step process. Subsequently, the chemists bound the sugar molecule to a protein which is used in many vaccines to heighten the immune reaction. The resulting glycoprotein produced by the sugar-protein compound was used to trigger an immune reaction in mice. The scientists used this circumstance to create antibodies to the plague pathogen using murine immune cells.
For further details, refer to the following paper:
Chakkumkal Anish, Xiaoqiang Guo, Annette Wahlbrink, Peter H. Seeberger. Plague Detection by Anti-carbohydrate Antibodies. Angewandte Chemie International Edition, 2013; DOI: 10.1002/anie.201301633
Posted by Tim Sandle
No comments:
Post a Comment
Pharmaceutical Microbiology Resources