Thursday, 14 May 2020

What type of cells does the novel coronavirus attack?


Scientists from the Berlin Institute of Health (BIH), Charité -- Universitätsmedizin Berlin and the Thorax Clinic at Heidelberg University Hospital, whose collaboration is taking place under the auspices of the German Center for Lung Research (DZL), have examined samples from non-virus infected patients to determine which cells of the lungs and bronchi are targets for novel coronavirus (SARS-CoV-2) infection. They discovered that the receptor for this coronavirus is abundantly expressed in certain progenitor cells. These cells normally develop into respiratory tract cells lined with hair-like projections called cilia that sweep mucus and bacteria out of the lungs.

The scientists knew, from studies by BIH Professor Christian Drosten, director of the Institute of Virology at Campus Charité; Mitte, and by others, that the virus's spike protein attaches to an ACE2 receptor on the cell surface. In addition, the virus needs one or more cofactors for it to be able to penetrate cells. But which cells are endowed with such receptors and cofactors? Which cells in which part of the respiratory system are particularly susceptible to SARS-CoV-2 infection? Eils and his colleagues at the BIH and Charité; now used single-cell sequencing technology to examine the cells in the samples from Heidelberg.
60,000 single cells were sequenced


The researchers discovered that certain progenitor cells in the bronchi are mainly responsible for producing the coronavirus receptors. These progenitor cells normally develop into respiratory tract cells lined with hair-like projections called cilia that sweep mucus and bacteria out of the lungs.

See:

Soeren Lukassen, Robert Lorenz Chua, Timo Trefzer, Nicolas C. Kahn, Marc A. Schneider, Thomas Muley, Hauke Winter, Michael Meister, Carmen Veith, Agnes W. Boots, Bianca P. Hennig, Michael Kreuter, Christian Conrad & Roland Eils. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO Journal, 2020 DOI: 10.15252/embj.20105114

Posted by Dr. Tim Sandle, Pharmaceutical Microbiology Resources (http://www.pharmamicroresources.com/)

No comments:

Post a comment

Pharmaceutical Microbiology Resources

Special offers