Scientists have produced new, effective and simplified forms of teixobactin - a new generation antibiotic which defeats multi-drug resistant infections such as MRSA - as part of a pioneering research effort to tackle antimicrobial resistance.
The team, led by Dr. Ishwar Singh at the University of Lincoln, UK, has pinpointed exactly which amino acid in the newly discovered teixobactin antibiotic makes it so successful at killing off harmful MRSA bacteria, which are resistant to many other antibiotics. The research team has adapted this rare molecule so that it can be easily used in the production of new drugs.
Their newest study, which directly targets MRSA bacteria, overcomes a further barrier in the race to combat drug resistant bacteria.
Singh, a specialist in novel drug design and development from the University of Lincoln's School of Pharmacy, explained, "The scientific community has found it extremely difficult, time-consuming and expensive to synthetically produce the amino acid, enduracididine, which makes teixobactin so effective at killing a range of pathogens without detectable resistance.
It has been predicted that by 2050 an additional 10 million people will succumb to drug resistant infections each year. The development of new antibiotics which can be used as a last resort when other drugs are ineffective is therefore a crucial area of study for healthcare researchers around the world.
The bacteria against which teixobactin is effective have, thus far, not shown any detectable resistance and given its mechanisms, scientists are also confident that resistance is unlikely to evolve in the future.
Singh is working with colleagues from the School of Life Sciences and the School of Chemistry at the University of Lincoln to develop teixobactin into a viable drug.
Dr. Edward Taylor, a lecturer in Life Sciences at Lincoln, said, "Antimicrobial resistance is spreading faster than the introduction of new antibiotics, which means there are major concerns about a possible health crisis. The recently discovered teixobactin has shown tremendous promise due to its potent activity, particularly against resistant pathogens such as MRSA, which is why it is the focus of important research here at Lincoln and around the world. Several other research groups substituted the rare enduracididine amino acid in teixobactin with commercially available building blocks, but the resulting products were much less active than the natural product. Our study aimed to find the most suitable replacement for this rare molecule, and we found that amino acids which have a similar structure and functional group were most effective."
The group found that three of the molecules they tested showed very promising activity against MRSA bacteria, and their research will now continue as they aim to produce several versions of teixobactin which could eventually become commercially available drugs.
The study is published in the Royal Society of Chemistry journal, Chemical Communications.
No comments:
Post a Comment
Pharmaceutical Microbiology Resources