Tuesday 5 February 2013

New Device Traps Particulates, Kills Airborne Pathogens

A new device called a soft x-ray electrostatic precipitator protected immune-compromised mice from airborne pathogenic bacteria, viruses, ultrafine particles, and allergens, according to a paper published online ahead of print in the journal Applied and Environmental Microbiology. The SXC ESP device multiple potential uses, and Washington University is working on licensing the technology.

"Small particles are difficult to remove, and our device overcomes that barrier," says Pratim Biswas of Washington University, St. Louis. "The device not only captures particles with a high level of efficiency that has never before been achieved; it also inactivates them. Even bioterror agents are blocked and completely inactivated."

The range of potential uses includes indoor protection of susceptible populations, such as people with respiratory illness or inhalation-induced allergies, and young children; protection of buildings from bio-terror attack; protection of individuals in hospital surgical theaters (for example, during open organ surgery); protection in cleanrooms for semiconductor fabrication; removal of ultrafine particles in power plants; and capture of diesel exhaust particulates.

The device could be used in homes, with a cost similar to that of high efficiency air cleaners. It could also be added into stand-alone indoor air cleaners, or incorporated into HVAC systems in homes, offices, and aircraft cabins. In the study, the device exceeded standards for high efficiency articulate air filters, which must be capable of removing particles larger than 0.3 micrometers with 99.97 percent efficiency.

The SXC ESP works by placing a charge on the particles and then using an electrical field to trap the particles. The SXC unit then also completely inactivates biological particles by irradiating them and photoionizing them—as UV light does, only more energetically.

Source: American Society for Microbiology

Posted by Tim Sandle

No comments:

Post a Comment

Pharmaceutical Microbiology Resources

Special offers