Tuesday, 16 June 2020

Efficient biosolar cells modelled on nature


Potential sources of renewable energy include protein complexes that are responsible for photosynthesis. However, their efficiency in technical applications still leaves much to be desired. For example, they cannot convert green light into energy. A research team has successfully closed this so-called green gap by combining a photosynthesis protein complex with a light-collecting protein from cyanobacteria.

Biosolar cells are an innovative concept for converting sunlight into electrical energy. They are manufactured using biological components from nature. At their core are so-called photosystems: large protein complexes that are responsible for energy conversion in plants, algae and cyanobacteria. Photosystem II, PSII for short, plays a central role in the process, because it can use water as an electron source for the generation of electricity.


The researchers stabilised these super complexes using short-chain chemical crosslinkers that permanently fix the proteins at a very short distance from each other. In the next step, they inserted them into appropriate electrode structure.

This design enabled the researchers to use twice as many photons within the green gap, compared to a system without any light collection complexes.

Posted by Dr. Tim Sandle, Pharmaceutical Microbiology Resources (http://www.pharmamicroresources.com/)

No comments:

Post a comment

Pharmaceutical Microbiology Resources

Special offers