Tuesday 23 May 2017

How a beneficial gut microbe adapted to breast milk


Breast milk provides vital nutrients not only to infants, but also to beneficial microbes that inhabit the gastrointestinal tract. A new study shows that a bacterial species called Bifidobacterium longum has successfully adapted to the unique niche of the infant gut by producing an enzyme called LnbX, which enables this microbe to grow on a sugar that is abundant only in human milk.

Gut microbes in early life are thought to have long-lasting effects on human health, and studies have shown that diet strongly influences the composition of this population. For example, human milk sugars are known to selectively promote the growth of beneficial gut microbes such as Bifidobacteria, which prevent diarrhea and pathogenic infection in infants. One major component of human milk is a sugar called lacto-N-tetraose, which is virtually absent in the milk of other mammals. Bifidobacteria produce enzymes that break down this sugar, strongly suggesting that a symbiotic relationship recently evolved between these microorganisms and humans.

While investigating how this symbiotic relationship evolved, Katayama and co-senior study author Shinya Fushinobu of the University of Tokyo previously characterized LnbB and isolated LnbX -- enzymes that degrade lacto-N-tetraose in Bifidobacterium bifidum and Bifidobacterium longum, respectively. In the new study, the researchers set out to build on these findings by determining the X-ray crystal structure of the catalytic domain of LnbX. The crystal structure, in combination with mutation and pharmacological experiments, revealed that LnbX has a distinct structure and catalytic mechanism from LnbB and therefore belongs to a novel family of glycoside hydrolase enzymes called GH136.

For further details see:

Chihaya Yamada, Aina Gotoh, Mikiyasu Sakanaka, Mitchell Hattie, Keith A. Stubbs, Ayako Katayama-Ikegami, Junko Hirose, Shin Kurihara, Takatoshi Arakawa, Motomitsu Kitaoka, Shujiro Okuda, Takane Katayama, Shinya Fushinobu. Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum. Cell Chemical Biology, 2017; DOI: 10.1016/j.chembiol.2017.03.012


Posted by Dr. Tim Sandle

No comments:

Post a Comment

Pharmaceutical Microbiology Resources

Special offers